A free boundary problem for spreading under shifting climate
نویسندگان
چکیده
منابع مشابه
A two-phase free boundary problem for a semilinear elliptic equation
In this paper we study a two-phase free boundary problem for a semilinear elliptic equation on a bounded domain $Dsubset mathbb{R}^{n}$ with smooth boundary. We give some results on the growth of solutions and characterize the free boundary points in terms of homogeneous harmonic polynomials using a fundamental result of Caffarelli and Friedman regarding the representation of functions whose ...
متن کاملA Boundary Meshless Method for Neumann Problem
Boundary integral equations (BIE) are reformulations of boundary value problems for partial differential equations. There is a plethora of research on numerical methods for all types of these equations such as solving by discretization which includes numerical integration. In this paper, the Neumann problem is reformulated to a BIE, and then moving least squares as a meshless method is describe...
متن کاملVariational Iteration Method for Free Vibration Analysis of a Timoshenko Beam under Various Boundary Conditions
In this paper, a relatively new method, namely variational iteration method (VIM), is developed for free vibration analysis of a Timoshenko beam with different boundary conditions. In the VIM, an appropriate Lagrange multiplier is first chosen according to order of the governing differential equation of the boundary value problem, and then an iteration process is used till the desired accuracy ...
متن کاملA free boundary problem for cell motion
The ability of a large variety of eukaryotic cells to actively move along different substrates plays a vital role in many biological processes. A key player in these processes is the cytoskeleton. In [7] we introduced a minimal hyperbolic-parabolic model for the reorganization of the actin cytoskeleton of a generic cell resting on a flat substrate and turning into a polarized state upon some ex...
متن کاملTHE STEFAN PROBLEM WITH KINETIC FUNCTIONS AT THE FREE BOUNDARY
This paper considers a class of one-dimensional solidification problem in which kinetic undercooling is incorporated into the temperature condition at the interface. A model problem with nonlinear kinetic law is considered. The main result is an existence theorem. The mathematical effects of the kinetic term are discussed
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Differential Equations
سال: 2020
ISSN: 0022-0396
DOI: 10.1016/j.jde.2020.04.024